Cardiomyopathy is associated with ribosomal protein gene haplo-insufficiency in Drosophila melanogaster.

نویسندگان

  • Michelle E Casad
  • Dennis Abraham
  • Il-Man Kim
  • Stephan Frangakis
  • Brian Dong
  • Na Lin
  • Matthew J Wolf
  • Howard A Rockman
چکیده

The Minute syndrome in Drosophila melanogaster is characterized by delayed development, poor fertility, and short slender bristles. Many Minute loci correspond to disruptions of genes for cytoplasmic ribosomal proteins, and therefore the phenotype has been attributed to alterations in translational processes. Although protein translation is crucial for all cells in an organism, it is unclear why Minute mutations cause effects in specific tissues. To determine whether the heart is sensitive to haplo-insufficiency of genes encoding ribosomal proteins, we measured heart function of Minute mutants using optical coherence tomography. We found that cardiomyopathy is associated with the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. While mutations of genes encoding non-Minute cytoplasmic ribosomal proteins are homozygous lethal, heterozygous deficiencies spanning these non-Minute genes did not cause a change in cardiac function. Deficiencies of genes for non-Minute mitochondrial ribosomal proteins also did not show abnormal cardiac function, with the exception of a heterozygous disruption of mRpS33. We demonstrate that cardiomyopathy is a common trait of the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. In contrast, most cases of heterozygous deficiencies of genes encoding non-Minute ribosomal proteins have normal heart function in adult Drosophila.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Genetic analysis of RpL38 and RpL5, two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster.

The Minute mutations of Drosophila melanogaster are thought to disrupt genes that encode ribosomal proteins (RPs) and thus impair ribosome function and protein synthesis. However, relatively few Minutes have been tied to distinct RP genes and more Minute loci are likely to be discovered. We have identified point mutations in RpL38 and RpL5 in a screen for factors limiting for growth of the D. m...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

DNase I hypersensitive sites of the chromatin for Drosophila melanogaster ribosomal protein 49 gene.

By using an indirect end-labelling technique for mapping, five DNase I hypersensitive sites have been located in Drosophila melanogaster chromatin at the 5'-end of the gene coding for ribosomal protein 49. These sites typically span about 100-600 base pairs and are approximately the length of a nucleosome apart (center to center distance ca 245 bp). This is the first analysis of the chromatin s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 189 3  شماره 

صفحات  -

تاریخ انتشار 2011